
Bicyclic RGD Peptides with Exquisite Selectivity for the Integrin αvβ3
Receptor Using a “Random Design” Approach
Dominik Bernhagen,† Vanessa Jungbluth,‡ Nestor Gisbert Quilis,‡ Jakub Dostalek,‡ Paul B. White,§

Kees Jalink,∥ and Peter Timmerman*,†,⊥

†Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands
‡Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
§Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
∥The Netherlands Cancer Institute, Plesmanlaan 21, 1066 CX Amsterdam, The Netherlands
⊥Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

*S Supporting Information

ABSTRACT: We describe the identification of bicyclic RGD
peptides with high affinity and selectivity for integrin αvβ3 via
high-throughput screening of partially randomized libraries.
Peptide libraries (672 different compounds) comprising the
universal integrin-binding sequence Arg-Gly-Asp (RGD) in the
first loop and a randomized sequence XXX (X being one of 18
canonical L-amino acids) in the second loop, both enclosed by
either an L- or D-Cys residue, were converted to bicyclic
peptides via reaction with 1,3,5-tris(bromomethyl)benzene
(T3). Screening of first-generation libraries yielded lead bicyclic inhibitors displaying submicromolar affinities for integrin αvβ3
(e.g., CT3HEQcT3RGDcT3, IC50 = 195 nM). Next generation (second and third) libraries were obtained by partially varying the
structure of the strongest lead inhibitors and screening for improved affinities and selectivities. In this way, we identified the
highly selective bicyclic αvβ3-binders CT3HPQcT3RGDcT3 (IC50 = 30 nM), CT3HPQCT3RGDcT3 (IC50 = 31 nM), and
CT3HSQCT3RGDcT3 (IC50 = 42 nM) with affinities comparable to that of a knottin-RGD-type peptide (32 amino acids, IC50 =
38 nM) and outstanding selectivities over integrins αvβ5 (IC50 > 10000 nM) and α5β1 (IC50 > 10000 nM). Affinity
measurements using surface plasmon-enhanced fluorescence spectroscopy (SPFS) yielded Kd values of 0.4 and 0.6 nM for the
Cy5-labeled bicycle CT3HPQcT3RGDcT3 and RGD “knottin” peptide, respectively. In vitro staining of HT29 cells with Cy5-
labeled bicycles using confocal microscopy revealed strong binding to integrins in their natural environment, which highlights
the high potential of these peptides as markers of integrin expression.
KEYWORDS: RGD, integrin, peptide−protein interaction, ELISA, bicyclic peptide, library screening, SPFS

■ INTRODUCTION
(Multi)cyclic peptides represent an important platform in drug
development owing to their unique properties, such as
conformational restriction and low toxicity. Peptides produced
by nature, for example, romidepsin, vancomycin, and
ciclosporin, and semisynthetic peptides such as dalbavancin
are established peptide-based drugs.1 Over the past years, the
bicyclic CLIPS-peptide platform, first described by our group,2

has attracted considerable interest by combining high target
affinities and selectivities with appreciable proteolytic stabil-
ities.3 It has been actively explored to provide a variety of
(enzyme) inhibitors. For example, Heinis et al. used the
technology in combination with phage-display library screen-
i n g t o i d en t i f y a b i c y c l i c p ep t i d e i nh i b i t o r
(ACT3SDRFRNCT3PADEALCT3G, T3 = 1,3,5-trimesitylenyl
scaffold), displaying nanomolar affinity to plasma kallikrein (Ki
= 1.5 nM).4 Here, the consensus motif SDRFRN was identified
in the first round of selection, followed by sequential
optimization of the second loop. Notably, the activities of

the linear peptides were at least 250-fold lower in comparison
to the corresponding T3-bicycles. The same group also
r e p o r t e d a b i c y c l i c p e p t i d e i n h i b i t o r
(ACT3SRYEVDCT3RGRGSACT3G) of urokinase-type plasmi-
nogen activator (uPA) with a Ki of 53 nM

5 and, most recently,
an active bicyclic inhibitor (ACT3HSRCT3PQLPPCT3G) of
sortase A (Ki = 1.1 μM).6 Luzi et al. also explored the high-
throughput potential of CLIPS phage-display libraries to
identify a potent bicyclic inhibitor (ACT3PPCT3LWQVLCT3,
Kd = 10 nM) to TNFα, one of the key mediators of several
inflammatory disorders.7 As an alternative to this, Lian et al.
developed a one-bead two-compound screening technology to
identify double-digit nanomolar bicyclic peptide inhibitors for
protein tyrosine phosphatase 1B (PTP1B), a type II diabetes
target,8 with the target-binding sequence in the first loop and
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the cell-penetrating peptide FΦRRRQ (Φ: L-naphthylalanine)
in the second loop. Recently, the same group reported a
submicromolar bicyclic inhibitor for K-Ras, combining a cell-
permeable peptide sequence in the first loop with the K-Ras
binding motif AJFRnΨID (J, D-Leu; Ψ, L-propargylglycine) in
the second loop.9

In this paper we describe a novel approach to identify potent
bicyclic binders to integrin αvβ3 by combining rational design10

with medium diversity (total of 672 peptides). These bicycles
combine a “fixed” RGD loop (“Design”) with a second loop
(XXX, “Random”) that further supports the RGD-integrin
affinity and also brings selectivity into the peptide. Integrins
represent a family of cell adhesion receptors11 that are
potential targets for novel therapeutic agents resulting from
their significant role in pathological processes. A major
contribution to the investigation of integrin-binding peptides
was made by Kessler and co-workers, who developed the
potent αvβ3 antagonist cilengitide,12 and other cyclopeptides
with decent affinities for integrins, such as αvβ3, α5β1, and
α6β1.

13a−g In addition, integrin affinity tuning via conforma-
tional confinement on of the RGD peptide on surfaces has
been reported.13h−j Recently, Cochran and co-workers
described a family of high-affinity integrin-binding “cystine-
knot” (knottin) RGD peptides, which are considered great
candidates for drug development.14 However, these disulfide-
rich peptides basically do not express any selectivity in binding
to the integrins αvβ3, α5β1, and αvβ5. Here we describe a set of
bicyclic RGD peptides that display both high affinities and
outstanding selectivities for αvβ3. Moreover, we also developed
a similar set of binders with selectivities for the integrin α5β1,
the results of which will be disclosed elsewhere. We consider
this combined “random-design” approach also highly suited for
identifying high-affinity and -selectivity binders to different
ECM target proteins based on e.g. the laminin-binding YIGSR-
or IKVAV-peptide motifs.

■ RESULTS AND DISCUSSION
General Procedure for Library Screening. Our

approach involves the design of partially randomized libraries
of small, RGD-containing bicyclic CLIPS (chemical linkage of
peptides onto scaffolds)15 peptides to be used in an iterative
affinity and selectivity optimization process for the integrin
receptor αvβ3. We used libraries of “label-free” peptides
comprising acetylated N-termini and C-terminal amides, the
individual αvβ3-binding activities of which were evaluated by
measuring the extent of inhibition of biotinylated knottin-RGD
binding to integrin αvβ3 using a recently published competition
ELISA setup (see Table S-1 in the Supporting Information).16

A schematic representation of this setup is given in the
Supporting Information of ref 16. At first, all 672 bicyclic RGD
peptides were screened for inhibition at the highest
concentration (1 mM). For the top 96 hits from the first
screening (top 30 for second and third generations), which
showed at least 90% inhibition at 1 mM, a second screening
was performed at lower concentration (2.5−10 μM) to
determine their affinities more accurately. Finally, the best
binders were resynthesized and HPLC-purified, followed by
determination of the IC50 values.
Design and Synthesis of RGD Peptide Libraries. We

designed linear peptide libraries consisting of two separate
binding motifs surrounded by three cysteines. The first motif
contains the well-known RGD sequence that should provide
the basal integrin affinity, while the second motif contains a

randomized sequence “XXX”, which is intended to support
binding of the RGD loop and also to provide integrin
selectivity. The motifs are enclosed by cysteines, which ensure
the double CLIPS cyclization (T3, Figure 1) and hence the
formation of a bicyclic peptide comprising two different loops.

The primary challenge was to determine the proper size of
both the RGD and the random X(X)nX loop. The well-known
integrin binder cilengitide (cyclo-[V(N-Me)RGDf])12 consists
of five amino acids. In a bicyclic peptide, a similar 5-mer loop is
generated by enclosing the 3-mer RGD sequence with two
cysteines; hence, the minimal integrin-binding motif CRGDC
was selected. We kept the RGD loop size constant in the first-
generation library and checked for further optimization at a
later stage. For the second, randomized loop, we considered a
trimer XXX motif suitable to provide the required level of
structural and conformational diversity. When all natural
amino acids (except cysteine and methionine) are included,
there are 324 (182) possible variants of the dimer motif XX,
5832 possible trimer sequences XXX, and 104976 variants for
the tetramer motif XXXX. Therefore, 96 different XXX motifs
would cover 1.8% of the total viable natural L-tripeptide space,
which is reasonable when one considers the chance to overlook
a high-affinity integrin binder after several rounds of
optimization, in particular in comparison to the 0.09%
coverage of structural space when a tetrameric XXXX motif
is used.
The RGD motif was located either in the C-terminal/right

loop and the XXX sequence in the N-terminal/left loop or vice
versa. A total of 96 random XXX sequences were generated for
each loop by using the software program R. In view of the
apparent effect of D-amino acids on integrin binding
affinity,12,17 additional sublibraries comprising different combi-
nations of L- and D-cysteines were also designed. Hence, the
entire first-generation library consisted of four sublibraries with

Figure 1.Methodology for the design of high-affinity bicyclic peptides
to integrin αvβ3. X represents any canonical L-amino acid. L-cysteines
are indicated in yellow, D-cysteines in orange, and RGD motifs in
green. Lead motifs are shown in purple.
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96 random sequences in the left loop and three sublibraries
with random sequences in the right loop, giving a total number
of 672 different T3 bicycles (CT3XXXCT3RGDCT3/
C T 3 X X X c T 3 R G D C T 3 / C T 3 X X X C T 3 R G D c T 3 /
C T 3 X X X c T 3 R G D c T 3 / c T 3 R G D C T 3 X X X C T 3 /
CT3RGDcT3XXXCT3/cT3RGDcT3XXXCT3, Figure 1). After
these libraries were screened for binding to integrin αvβ3
(method described below), various lead motifs for next-
generation libraries were derived from the sequences of the
best binders. The second loop in the second-generation
libraries comprised (i) all first-generation lead sequences (e.g.,
QAD), extended by one amino acid (XQAD or QADX), and
(ii) a full replacement set of the second amino acid (X in the
HXQ motif, in view of multiple positive hits: HEQ/2xHLQ).
After the best second-generation αvβ3-binders were identified,
a set of third-generation libraries was designed on the basis of
(i) a full set of replacement variants (86 peptides) based on the
HWQ motif and (ii) extension of the RGD loops on either or
both ends with one amino acid (e.g., RGDX/XRGD or

GRGDX/XRGDS) while the second loop HWQ was kept
constant.

Screening Bicyclic Peptide Libraries for αvβ3-Bindin.
About 4% of the 672 first-generation bicyclic RGD peptides
showed OD405 values below 0.4, corresponding to more than
80% inhibition of knottin-RGD binding to αvβ3 (OD405 = 0.2,
100% inhibition; OD405 = 1.2, 0% inhibition). For the
strongest αvβ3-binding bicycles, we observed an overrepresen-
tation of peptides comprising the RGD motif in the C-
terminal/right loop. Moreover, the best binders all had at least
one D-Cys attached to the RGD sequence, either C-terminal or
both N- and C-terminal, which is consistent with the results of
Kessler et al., who reported enhanced integrin binding for
(mono)cyclic peptides with a D-amino acid next to the RGD
motif.17 Furthermore, we also found that peptides comprising
the motif HXQ (X = any L-amino acid) in the left loop mostly
showed significant inhibition. Surprisingly, approximately 50%
of the bicyclic RGD peptides showed OD405 values of higher
than 2.0, even though the OD405 of pure biotinylated knottin-
RGD peptide was only ∼1.2. Apparently, those bicycles

Figure 2. (A) IC50 values for first-, second-, and third-generation bicyclic integrin αvβ3 binders. Each concentration was tested in triplicate. IC50
values were calculated via nonlinear regression analysis. Inhibition values were calculated on the basis of absorbance when the bicyclic competitor
was not present (0%, OD405 ≈ 1.8), or when nonbiotinylated knottin-RGD was added at 30 μM (100%, OD405 ≈ 0.2). (B) Molecular structure of
the second-generation bicycle withthe highest integrin αvβ3 affinity. (C) Alanine replacement analysis for the bicycle CT3HPQcT3RGDcT3. (D) Full
amino acid replacement analysis (HWQ motif) of the bicycle CT3HWQCT3RGDcT3 using nonpurified peptides. If absorbances were not lower but
higher in the presence of nonlabeled peptide, inhibition values were reported as <0. Boldface, framed values refer to the lead peptide. D-Amino acids
are represented as small letters.
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somehow activate either the αvβ3 for knottin-RGD binding or
vice versa. Another possibility might be that these bicycles
promiscuously bind to the integrin and streptavidin. In any
event, at this point we did not further investigate those bicycles
or considered them of interest as potent and selective αvβ3
binders.
We then retested the best 96 hits from the first screening

using only a 100-fold excess (10 μM) over the knottin-RGD
peptide, and from these only 28% (27 peptides) showed >50%
inhibition. The four strongest binders from both screenings
( C T 3Q AD c T 3 R GD c T 3 , C T 3H EQ c T 3 R GD c T 3 ,
CT3QWGCT3RGDcT3, and CT3WGDCT3RGDcT3) were then
resynthesized on a larger scale (20 μmol) and purified and
their activities determined (195 nM < IC50 < 835 nM, Figure
2A). These values are still significantly higher than those
determined for the knottin-RGD peptide itself (38 nM) and
the cyclo-[KRGDf] peptide (35 nM). To further improve
affinities, second-generation libraries were designed using the
six best binders from first screenings as a lead, having (i)
extended (4-mer) second loops, e.g. XQAD or QADX (total of
216 peptides, see Figure 1), (ii) a full set of replacements for
the glutamate (E) of the motif HEQ (25 peptides), (iii) a set
of 12 non-natural variants of various potent lead sequences
(see the Supporting Information), and (iv) the best 8 hits from
first-generation screenings. From the total set of 261 RGD
bicycles 31% (82 peptides) showed >50% inhibition at 5 μM,
while only 7% (18) showed even >70% inhibition. To further
narrow down the selection, we performed a rescreening of the
best 30 hits at 2.5 μM, in which only 6% of the peptides (15)
showed >50% inhibition and only 2% (6 peptides) showed
>70% inhibition. None of the six best binders comprised an
extended 4-mer sequence (such as XQAD or WGDX),
indicating the choice for a trimer sequence in the left loop
was correct. Instead, five peptides comprised the HXQ motif
(with X = W(2x)/P/N/F) and one the non-natural sequence
Q[Abu]D (Abu = L-2-aminobutyric acid), with IC50 values
(measured with HPLC-purified peptides) ranging from 30 nM
(CT3HPQcT3RGDcT3) to 225 nM (CT3HWQcT3RGDcT3,
Figure 2A). Molecular structures of the best αvβ3 inhibitors
are shown in Figure 2B. Five of the six second-generation
binders showed lower IC50 values in comparison to the best
first-generation binder (CT3HEQcT3RGDcT3, IC50 = 195 nM).
The strongest binder, CT3HPQcT3RGDcT3, displayed an IC50
value of 30 nM, which is comparable to that of knottin-RGD
(38 nM) as reported by Kimura et al.14a

We then designed third-generation libraries comprising (i) a
complete set of single-replacement variants for the second-
generation lead HWQ (86 peptides) and (ii) 4-mer and 5-mer
RGD loops extended by an additional amino acid (X) at either
one or both ends, while the HWQ loop was kept constant (57
tetramer and 56 pentamer peptides, in total 113 peptides;
Figure 1). From the total of ∼200 bicycles that were screened
at 5 μM, 35% (79 peptides) showed >50% inhibition, 18% (35
peptides) showed >70% inhibition, and only 4% (8 peptides)
displayed >90% inhibition. In the rescreening of the best 20
hits (at 2.5 μM), 95% (19) of the peptides showed >80%
inhibition, while only four peptides (20%) showed even >90%
inhibition. The best six binders (i.e., CT3HPQCT3RGDcT3,
CT3H[Aib]QCT3RGDcT3 (with Aib = 2-aminoisobutyric acid),
C T 3H RQ C T 3 R G D c T 3 , C T 3H FQ C T 3 R G D c T 3 ,
CT3HWECT3RGDcT3, and CT3HSQCT3RGDcT3) were resyn-
thesized and purified for activity testing in a concentration-
d e p end en t mann e r . Th e mo s t a c t i v e b i n d e r

(CT3HPQCT3RGDcT3, IC50 = 31 nM) differed only from the
best second-generation binder, i.e. CT3HPQcT3RGDcT3
(Figure 2A), in the configuration of the second cysteine. The
other third-generation binders showed IC50 values ranging
from 42 to 157 nM.
An alanine replacement study, in which each amino acid of

the best αvβ3 binder CT3HPQcT3RGDcT3 (85% inhibition at 1
μM) was sequentially replaced by L- or D-alanine, revealed
significantly decreased affinities when R/G/D (<0%), H/P/Q
(40−69%), or either one of the L-/D-cysteine residues formed
monocyclic peptides (4−25%, Figure 2C). Furthermore, a full
replacement study on the HWQ loop of the second-generation
binder CT3HWQcT3RGDcT3 (Figure 2D) clearly revealed the
much higher importance of H (histidine) and Q (glutamine)
in comparison to W (tryptophan). This obviously is the reason
why so many W variants showed up as potentially improved
binders.

Essence of Cysteine Residues. We also tested variants of
the second-generation lead CT3HWQCT3RGDcT3 (27 peptides
in total) in which one, two, or all three cysteines were replaced
by the non-natural variants L-/D-homocysteine (hC/hc), or L-/
D-penicillamine (Pen/pen) (Figure S2 in the Supporting
Information). All mutations showed a clear decrease in αvβ3
binding, but the decrease was much stronger for the Pen
variants in comparison to the hC variants. For example,
CT3HWQ(hC)T3RGDcT3 and CT3HWQCT3RGD(hc)T3
showed 85/53% and 80/37% inhibition at 10 or 1 μM (88/
55% for the lead), whereas the corresponding Pen variants
CT3HWQ(Pen)T3RGDcT3 and CT3HWQCT3RGD(pen)T3
basically showed no measurable inhibition (i.e., 0%) at 10
μM. Occasionally the Pen variants did show activities
comparable to those of the corresponding hC variants, as for
(Pen)T3HWQCT3RGDcT3 (31%/8% at 10/1 μM) and
(hC)T3HWQCT3RGD(hc)T3 (20%/12% at 10/1 μM), but
an improved affinity was never observed, suggesting that the
additional methyl groups in penicillamine largely abolish the
integrin−bicycle interaction.

Single-Loop Controls. To illustrate the essence of the
bicyclic peptide format for binding activity, we synthesized and
tested the single-loop variants of some of the first-generation
binders in which one of the three D-/L-cysteines was replaced
by a lan ines . The s ing le - loop var i an ts (C/A-1 ,
AQADcmT2RGDcmT2; c/a-2, CmT2QADaRGDcmT2; c/a-3,
CmT2QADcmT2RGDa) were synthesized using 1,3-bis-
(bromomethyl) benzene (mT2), which is the bivalent half of
the trivalent T3 scaffold (for more detailed information on
peptides constrained via CLIPS scaffolds T3 and mT2, see refs
2, 3b, 4, 5, and 10). For CT3QADcT3RGDcT3, αvβ3 binding
strongly decreased on opening the QAD loop (79% to 7% for
C/A-1), the RGD loop (79% to 0% for c/a-3), or both (79%
to 32% for c/a-2) (see Table S-2 in the Supporting
Information). Likewise, a vast decrease in affinity was observed
f o r s i n g l e - l oop v a r i a n t s o f b i c y c l i c p ep t i d e s
CT3HEQcT3RGDcT3 (from 92% to 22% (C/A-1), 28% (c/a-
3), and 22% (c/a-2)) and CT3WGDCT3RGDcT3 (from 75% to
52% (C/A-1), 8% (c/a-3), and 23% (C/A-2)), which
exemplifies the essence of constraining both loops for optimal
αvβ3 inhibition. Moreover, the corresponding single-loop RGD
peptides also showed much lower binding values at 10 μM in
comparison to the best bicyclic binders (CmT2RGDCmT2, 23%;
CmT2RGDcmT2, 57%; cmT2RGDcmT2, 41% (Table S-2 in the
Supporting Informtion), which underscores the importance of
the second loop for integrin αvβ3 binding.
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Binding of HPQ Bicycles to Streptavidin. The fact that
we identified high-affinity αvβ3 binders comprising the HPQ
motif via a competition ELISA may complicate the assay
interpretation, as this motif is known to bind to streptavidin
under certain conditions.18 In order to exclude the possibility
that bicycles containing HPQ or similar motifs directly interact
with streptavidin, and so would falsely indicate a strong αvβ3
interaction, we directly measured the ability of a series of
bicyclic and monocyclic peptides comprising the HPQ motif to
bind to streptavidin-HRP in a simple binding ELISA (Table S-
3 in the Supporting Information). As expected, none of the bi-
and monocyclic peptides showed detectable binding to Strep-
HRP in the 0.005−30 μM concentration range as used in the
compet i t ion ELISA. Only the b icyc l i c pept ide
CT3HFQCT3RGDcT3 (OD ≈ 0.2) and monocyclic control
CmT2HPQcmT2 showed very weak binding to Strep-HRP at 100
μM (OD ≈ 0.4), but this can by no means be held responsible
for the fact that bicycles CT3HPQCT3RGDcT3 and
CT3HPQcT3RGDcT3 were identified as the most potent RGD
bicycle binders to integrin αvβ3.
Determination of Affinity Binding Constants (Kd). We

also studied the bicycle−integrin interaction in a direct manner
using surface plasmon-enhanced fluorescence spectroscopy
(SPFS),19 an optical technique that combines surface plasmon
resonance (SPR) with fluorescence spectroscopy. For that
purpose, (i) the bicycle-peptide CT3HPQcT3RGDcT3 (best
third-generation binder), (ii) linear GRGDS, (iii) cyclo-
[KRGDf] and (iv) knottin-RGD were resynthesized including
an N-terminal linker (K-PPPSG[Abz]SG, Abz = 4-amino-
benzoic acid) following earlier studies of Pallarola et al.
showing this linker to be minimally invasive with integrin
affinity.20 The N-terminal lysine was acetylated, while the
lysine side-chain amine was deprotected. Since the use of
conventional SPR lacked sensitivity (data not shown),
probably due to the low molecular weight (∼2 kDa) of the
bicycles, the peptides were labeled with the fluorescent Cy5 tag
via coupling of a Cy5-NHS activated ester to the lysine side-
chain amine, and the surface plasmon field intensity was
applied at the wavelength coincident with the absorption band
of Cy5 to locally excite a fluorescence signal in close proximity
to the gold surface. This approach increases the fluorescence
signal originating from the peptide binding at the surface with
an immobilized integrin receptor, which allows kinetic
measurements.19 Concentration-dependent fluorescence
curves F(c) were normalized to ΔFmax (value measured at
saturation concentration) and fitted via Langmuir isotherm
(Figure 3A). The dissociation equilibrium constant (Kd) was
determined for Cy5-labeled CT3HPQcT3RGDcT3, which
turned out to be comparable to that of Cy5-labeled knottin-
RGD (0.6 nM, Figure 3B). These results perfectly align with
the competition ELISA data (Figure 2A). For Cy5-labeled
cyclo-[KRGDf], a slightly weaker affinity (Kd = 4.1 nM) was
determined, indicating that Cy5 labeling affects αvβ3 binding of
cyclo-[KRGDf] more significantly than for knottin-RGD or the
bicyclic peptide (see IC50 values, Figure 2A). The linear
peptide Cy5-GRGDS did not show measurable binding to αvβ3
in SPFS.
Selectivity of Bicycle Binding to αvβ3. Finally, we

compared the αvβ3 binding abilities of CT3HPQcT3RGDcT3,
CT3HPQCT3RGDcT3, and CT3HSQCT3RGDcT3, the three
highest-affinity bicycle peptides, and control peptides (knot-
tin-RGD and cyclo-[KRGDf]) with the corresponding binding
values for integrins α5β1 and αvβ5 by measuring IC50 values in

competition ELISA. We found that none of the three bicycle
peptides showed any measurable interaction with either αvβ5
nor α5β1 (IC50 > 10000 nM), which highlights their
outstanding selectivities for αvβ3 (Table 1). In sharp contrast

to this, cyclo-[KRGDf] did show strong binding to αvβ5 (IC50 =
182 nM) while not to α5β1, whereas knottin-RGD bound to all
integrins with equally strong affinity (αvβ5, IC50 = 76 nM; α5β1,
IC50 = 114 nM). These data reveal that bicyclic RGD peptides
display αvβ3 selectivities superior to benchmark RGD peptides,
such as knottin-RGD, cyclo-[KRGDf] and cilengitide.12

Recently, Neubauer et al. described peptidomimetics with
αvβ3/α5β1 selectivity ratios of ∼0.006 and ∼0.007 (ratio of
corresponding IC50 values),

13f which is still at least 2-fold less
selective in comparison to the highest-affinity bicyclic αvβ3
binder CT3HPQcT3RGDcT3, for which this ratio is ≤0.003.

Figure 3. (A) Concentration-dependent, normalized fluorescence
signals for selected Cy5-labeled peptide binding to integrin αvβ3; (B)
Overview of measured equilibrium dissociation constants (Kd).
Linker: PPPSG[4-Abz]SG.

Table 1. IC50 Values Determined Using Competition ELISA
for Three Best-Binding RGD Bicycle Peptides, cyclo-
[KRGDf], Cilengitide, and Knottin-RGD for Different
Integrinsa

IC50 (nM)

peptide αVβ3 αvβ5 α5β1

CT3HPQcT3RGDcT3 30 ± 4 >10000 >10000
CT3HPQCT3RGDcT3 31 ± 2 >10000 >10000
CT3HSQCT3RGDcT3 42 ± 6 >10000 >10000
cyclo-[KRGDf] 35 ± 6 182 ± 29 >10000
cilengitide 121 ± 18 26 ± 5 >10000
knottin-RGD 38 ± 5 76 ± 7 114 ± 8

aEach concentration was tested in triplicate. IC50 values were
calculated via nonlinear regression analysis using GraphPad.
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Structural Analysis via 2D-NMR Spectroscopy. Bicycle
peptide CT3HPQCT3RGDcT3 was studied in detail by NMR
using different techniques (COSY/ROESY/TOCSY/HSQC).
Individual residues were identified through their 1H and 13C
(in particular Hα/Cα) chemical shifts (from edited HSQC) as
well as chemical shifts of the side-chain resonances (2D
TOCSY). From these data it can be concluded that the peptide
largely adopts a random coil structure rather than an ordered
secondary structure (Figure 4). This is fully in line with data

from circular dichroism spectroscopy (data not shown) that
were also representative of mainly random-coil structures in
solution. Another possibility is that the peptide adopts a
different folded structureapart from α-helix or β-sheetthat
cannot be detected with 2D NMR techniques. Interestingly,
the histidine residue shows a double set of aromatic proton
resonances at 8.66/8.60 and 7.33/7.29 ppm, which according
to 1D/2D-ROESY experiments are belonging to different
conformers in chemical exchange. Given the slight differences

in 1H and 13C chemical shifts of the exchanging histidines, it is
unlikely the effect arises from π/τ tautomerism. Rather, a more
likely explanation is that two different proline conformations
coexist (∼3:1 ratio), which influences the chemical shifts of
neighboring residues, such as histidine and the N-acetyl methyl
resonance (1.91/2.03 ppm). This is supported by the
significant differences in the proline diastereotopic Hδ

resonances (3.92 vs 3.66 ppm and 3.75 vs 3.50 ppm), and
the effect diminishes as one moves farther away from the
proline. Considering the sharpness of the resonances,
relaxation measurements were not pursued, as the structure
is most likely monomeric.

Membrane Binding on Integrin-Expressing Cells
(HT29). In order to prove that RGD bicycles also bind to
integrins in their natural environment of the cell membrane, we
labeled human colon cancer cells (HT29, express integrin αv

subunit) with the Cy5-functionalized bicycle peptide
CT3HPQCT3RGDcT3, knottin-RGD, and cyclo-[KRGDf] and
detected fluorescence emission via confocal microscopy.
Surprisingly, the bicycle shows very high staining levels,
much higher than that of the Cy5-labeled benchmark knottin-
RGD (Figure 5), while the Cy5-labeled cyclo-[KRGDf] peptide
is virtually silent under these conditions. Thereby, the peptide
is clearly located on the cell membrane and is hardly
internalized. Control studies with scrambled RGD bicycles
showed did not show any traces of cell staining (data not
shown), which proves that binding is clearly sequence specific.
These data illustrate the potential of RGD bicycles as powerful
markers of integrin expression on live cells.

■ CONCLUSION

In this study, we presented bicyclic RGD “CLIPS” peptides as
a novel platform for high-affinity and -selectivity integrin αvβ3
binders. These peptides offer a straightforward, cost-effective,
and versatile alternative for established binders, such as
knottin-RGD and cyclo-[KRGDf]. The observed high
selectivity for integrin αvβ3 suggests applications in integrin-
mediated in vivo tumor staining, cancer diagnostics, and/or
cancer therapeutics.”

Figure 4. Chemical shift difference plots for Cα and Cβ calculated by
Δδ(13Cα) = δ(13Cα,rc) − δ(13Cα,i) and Δδ(13Cβ) = δ(13Cβ,i) −
δ(13Cβ,rc) (i = measured amino acid in bicycle, rc = random coil
chemical shift). Positive values reflect more β-sheet character, while
negative values represent more α-helical character. Amino acids that
are close to the baseline are indicative of a random coil structure or
show both α-helical and β-sheet character or alternatively structured
sequences.

Figure 5. Confocal microscopy images of HT29 cells incubated with benchmarks Cy5-linker-knottin-RGD (A), cyclo-[K(Cy5-linker)RGDf] (B),
and bicycle Cy5-linker-CT3HPQcT3RGDcT3 (C). Cells were incubated on glass coverslips for at least 24 h, followed by addition of Cy5-labeled
peptides for 30 min at 4 °C, washing, fixation with 4% PFA, and finally confocal analysis. All images were acquired under identical imaging
conditions and processed via ImageJ (LUT: Fire). The contrast is shown in arbitrary units (au): 0, no fluorescence; 50, maximum fluorescence.
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■ MATERIALS AND METHODS

Reagents and Chemicals. Incubation and washing buffers
were prepared using standard protocols. Recombinant human
integrins were purchased from R&D Systems (Minneapolis,
USA). Strep-HRP (Streptavidin-Horseradish Peroxidase con-
jugate, Southern-Biotech, Birmingham, USA), was diluted
1:1000 for ELISA experiments. Amino acids were purchased
from Iris Biotech (Marktredwitz, Germany) and Matrix
Innovation (Quebec, Canada). Resins were purchased from
Rapp Polymere (Tübingen, Germany) and Merck (Darmstadt,
Germany). MnCl2·4H2O, 1,3,5-tris(bromomethyl)benzene
(T3), 1,3-bis(bromomethyl)-benzene (mT2), 2,2-dithiobis(5-
nitropyridine) (DTNP), ethyl(dimethylaminopropyl)-
carbodiimide (EDC), N-hydroxysuccinimide (NHS), ethanol-
amine, Tween20, ethylene glycol, and acetic acid and sodium
acetate for the preparation of acetate buffer were purchased
from Sigma-Aldrich (Steinheim, Germany). CaCl2·2H2O,
MgCl2·6H2O, and phosphate-buffered saline (PBS) were
purchased from Merck (Darmstadt, Germany). Tween80 was
purchased from Faryon (Capelle, The Netherlands), and I-
Block was purchased from Tropix (Bedford, USA). Disulfo-
Cy5-NHS ester was purchased from Cyandye (Sunny Isles
Beach, USA). Dithiolaromatic PEG6-carboxylate (thiol-
COOH; SPT0014A6) and dithiolaromatic PEG3 (thiolPEG);
SPT-0013) were purchased from SensoPath Technologies
(Bozeman, USA). Sodium p-tetrafluorophenol-sulfonate
(TFPS) and S-3-(benzoylphenoxy)propyl ethanethioate
(thiol-benzophenone) were synthesized at the Max Planck
Institute for Polymer Research (Mainz, Germany) according to
the literature.21,22 Poly(N-isopropylacrylamide)-based terpol-
ymer with a 94:5:1 molar ratio of N-isopropylacrylamide,
methacrylic acid, and 4-methacryloyloxy benzophenone
(pNIPAAm) were synthesized as previously described.23,24

Peptide Synthesis. Synthesis of crude bicyclic peptide
libraries, purified bicyclic and monocyclic peptides, and Cy5-
labeled peptides was performed using standard Fmoc-based
peptide synthesis. All 672 peptides were synthesized and
collected separately (synthesis on 2 μmol scale on solid phase,
collection in 96-well polypropylene storage plates (each 2 mL).
For more detailed information, see the Supporting Information
ELISA. For buffer compositions and concentrations, see

Table S-1 in the Supporting Information.
Integrin Coating and Blocking. Plates were coated with

100 μL of a 0.25−0.5 μg/mL integrin solution in coating buffer
onto 96-well NUNC Polysorp plates (overnight, 4 °C)
followed by blocking with 150 μL of 1% I-Block in blocking
buffer (60 min, room temperature) and 3× washing with 400
μL of washing buffer.
Library Screening. In each screening experiment, 96 or 192

different peptides were tested. Bicyclic peptide libraries (2
μmol) were dissolved in DMSO (10 mM stock solutions) and
further diluted to working concentrations (1 mM to 2.5 μM)
with incubation buffer. After incubation with a fixed
concentration of biotinylated knottin-RGD peptide in
incubation buffer (minimum 15 min, room temperature), the
individual bicycle solutions were added to the integrin-coated
plates (90 min, room temperature), followed by 3× washing
with washing buffer. Then the plates were incubated with 100
μL of 1:1000 Strep-HRP in Strep-HRP buffer (60 min, room
temperature). After 4× washing they were incubated with 150
μL of substrate buffer containing 0.91 mM ABTS (2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) and 0.006% H2O2

in substrate buffer (0.2 M Na2HPO4 adjusted to pH 4 using
0.2 M citric acid). Absorbance (405 nm) was measured after 4
min using a Molecular Devices Spectramax M2 plate reader.

IC50 Determination. Peptides were mixed in eight different
concentrations (each 3-fold dilutions) with a fixed concen-
tration of biotinylated knottin-RGD (both in incubation buffer,
15 min, room temperature), followed by incubation of the
plates with peptide/biotinylated knottin-RGD solutions for 90
min at room temperature. Strep-HRP and ABTS incubation
steps were performed as described for library screening. All
concentrations were tested in triplicate. IC50 values were
calculated via nonlinear regression analysis using GraphPad
Prism software and represent the peptide concentration at
which 50% inhibition of biotinylated knottin binding is
observed.

Surface Plasmon-Enhanced Fluorescence Spectroscopy
(SPFS). For the description of the optical system, sensor chip
preparation, and the immobilization of the ligand, see the
Supporting Information.

Measurement of Equilibrium Dissociation Constant Kd.
For measurement of the binding affinity of Cy5-labeled
peptides to immobilized integrin ligands, PBS with 1 mM
CaCl2, 0.5 mM MnCl2, 1 mg/mL BSA, and 0.05% Tween20
was used as the running buffer. Different concentrations of the
peptide (0.1, 1, 5, 10, 50, 100, and 1000 nM) were sequentially
flushed over the sensor surface. The sample at each
concentration was allowed to react with the integrin for 30
min followed by rinsing the surface with running buffer
solution for 10 min. The binding of the target analyte was
monitored in real time by measuring the fluorescence intensity
F(t) originating from the close proximity to the sensor surface
that was probed by resonantly excited surface plasmons
(Figure S-4B in the Supporting Information). The fluorescence
signal F gradually increased upon binding of target analyte, and
for each concentration, the equilibrium fluorescence signal ΔF
was determined as a difference to the fluorescence baseline
after 10 min of rinsing with running buffer. The titration curve
was established on the basis of these values, and it was fitted
with a Langmuir isotherm model (function ΔF = ΔFmaxc/(Kd +
c)) in order to determine the equilibrium dissociation constant
Kd.

NMR. A detailed description of the acquisition of the NMR
spectra, devices, methods, and spectrum editing, as well as the
1H NMR spectrum of the bicycle CT3HPQcT3RGDcT3 (Figure
S-5) is depicted in the Supporting Information. T1 measure-
ments were performed by properly calibrating the 90° pulse
length and then performing estimates using the 1D inversion
recovery sequence with excitation sculpting water suppression.
After the longest T1 was determined to be approximately 2 s, a
pseudo-2D inversion recovery experiment was performed with
10 separate delays of 8 scans each with a total longitudinal
relaxation time of 10.3 s. T2 measurements were acquired by
first performing estimates using the 1D PROJECT-CMPG
sequence25 with presaturation water suppression. After the
longest T2 was determined to be approximately 1 s, a pseudo-
2D PROJECT-CPMG sequence experiment with presaturation
was performed with 12 separate delays of 8 scans each and a
cycle time of 4 ms with a total longitudinal relaxation time of
10.3 s.

Cell Integrin Staining and Confocal Microscopy.
Human colorectal adenocarcinoma cells (HT29) were
obtained from The Netherlands Cancer Institute (NKI) and
grown using standard procedures and conditions. For the
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experiment, the cells were allowed to adhere on clean glass
coverslips for at least 24 h until they reached approximately
40−50% confluency. Then, the glass coverslips were washed
two times with cold HCG buffer (carbonate-buffered saline,
pH 7.2, containing 140 mM NaCl, 5 mM KCl, 23 mM
NaHCO3, 10 mM HEPES, 10 mM glucose, 1 mM CaCl2, 0.5
mM MgCl2, and 0.5 mM MnCl2) to remove nonadhered cells,
followed by adding cold HCG buffer and cooling of the glass
coverslips to 4 °C. Afterward, the Cy5-labeled peptides were
added and allowed to incubate at 1 μM for 30 min at 4 °C,
followed by at least five washing steps with HCG buffer,
fixation with 4% paraformaldehyde solution in PBS pH 7.4 (20
min), and another four washing steps with HCG buffer.
Subsequently, the cells were analyzed via confocal microscopy
using a Leica TCS SP8 confocal microscope equipped with a
supercontinuum white light laser (NKT Photonics) and water
immersion objectives (63x W PL APO CS2, NA 1.2/40x W PL
APO CS2, NA 1.1). The excitation wavelength was set to 633
nm while fluorescence was detected from 646 to 778 nm. All
images were acquired under identical imaging conditions and
processed via ImageJ (LUT: Fire).

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acscombs-
ci.8b00144.

Structures of (biotinylated) knottin-RGD and cyclo-
[KRGDf], detailed information about peptide synthesis,
analysis, and purification and amino acids used in
peptide libraries, additional peptides screened, and
structure of biotinylated knottin-RGD peptide, param-
eters varied in the competition ELISA setup, inhibition
values for selected bicyclic peptides and monocyclic
analogues, position-replacement analysis for cysteines,
ELISA protocol for testing HPQ-streptavidin binding
and results, description and schematic of optical
instrument used for SPFS and ligand immobilization,
SPR sensorgrams and SPFS measurement for Cy5-
functionalized bicycle CT3HPQcT3RGDcT3, additional
NMR information, and 1H NMR spectrum of bicycle
CT3HPQcT3RGDcT3 (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*P.T.: tel, +31-320-225300; fax, +31-320-225301; e-mail, p.
timmerman@pepscan.com.
ORCID
Jakub Dostalek: 0000-0002-0431-2170
Peter Timmerman: 0000-0001-6687-5297
Author Contributions
The manuscript was written through contributions of all
authors. D.B. and P.T. conceived the concept and analyzed the
data. D.B. performed peptide syntheses, competition and
binding ELISA experiments, and in vitro integrin staining
experiments. V.J., N.G.Q., and J.D. designed, performed, and
analyzed the SPR experiments. P.B.W. performed and analyzed
the NMR experiments. D.B., K.J. and P.T. evaluated the
confocal images. D.B., P.B.W., and P.T. wrote the manuscript.
All authors have given approval to the final version of the
manuscript.

Notes
The authors declare the following competing financial
interest(s): Pepscan is the inventor of the CLIPS technology
and holds a patent on the synthesis of bicyclic peptides using
2-CLIPS technology.

■ ACKNOWLEDGMENTS
This project received funding from Horizon-2020 research and
innovation program BIOGEL under the Marie Sklodowska-
Curie grant agreement No. 64268.

■ REFERENCES
(1) (a) Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K. The
exploration of macrocycles for drug discovery  an underexploited
structural class. Nat. Rev. Drug Discovery 2008, 7, 608−624. (b) Craik,
D. J.; Fairlie, D. P.; Liras, S.; Price, D. The Future of Peptide-based
Drugs. Chem. Biol. Drug Des. 2013, 81, 136−147. (c) Wang, C. K.;
Craik, D. J. Cyclic peptide oral bioavailability: Lessons from the past.
Biopolymers 2016, 106, 901−909.
(2) Timmerman, P.; Beld, J.; Puijk, W. C.; Meloen, R. H. Rapid and
quantitative cyclization of multiple peptide loops onto synthetic
scaffolds for structural mimicry of protein surfaces. ChemBioChem
2005, 6, 821−824.
(3) (a) Li, P.; Roller, P. P. Cyclization strategies in peptide derived
drug design. Curr. Top. Med. Chem. 2002, 2, 325−341. (b) Baeriswyl,
V.; Heinis, C. Polycyclic Peptide Therapeutics. ChemMedChem 2013,
8, 377−384.
(4) Heinis, C.; Rutherford, T.; Freund, S.; Winter, G. Phage-
encoded combinatorial chemical libraries based on bicyclic peptides.
Nat. Chem. Biol. 2009, 5, 502−507.
(5) Angelini, A.; Cendron, L.; Chen, S.; Touati, J.; Winter, G.;
Zanotti, G.; Heinis, C. Bicyclic peptide inhibitor reveals large contact
interface with a protease target. ACS Chem. Biol. 2012, 7, 817−821.
(6) Rentero Rebollo, I.; McCallin, S.; Bertoldo, D.; Entenza, J. M.;
Moreillon, P.; Heinis, C. Development of Potent and Selective S.
aureus Sortase A Inhibitors Based on Peptide Macrocycles. ACS Med.
Chem. Lett. 2016, 7, 606−611.
(7) Luzi, S.; Kondo, Y.; Bernard, E.; Stadler, L. K. J.; Vaysburd, M.;
Winter, G.; Holliger, P. Subunit disassembly and inhibition of TNFα
by a semi-synthetic bicyclic peptide. Protein Eng., Des. Sel. 2015, 28,
45−52.
(8) Lian, W.; Jiang, B.; Qian, Z.; Pei, D. Cell-permeable bicyclic
peptide inhibitors against intracellular proteins. J. Am. Chem. Soc.
2014, 136, 9830−9833.
(9) Trinh, T. B.; Upadhyaya, P.; Qian, Z.; Pei, D. Discovery of a
Direct Ras Inhibitor by Screening a Combinatorial Library of Cell-
Permeable Bicyclic Peptides. ACS Comb. Sci. 2016, 18, 75−85.
(10) Timmerman, P.; Barderas, R.; Desmet, J.; Shochat, S.;
Monasterio, A.; Casal, J. I.; Meloen, R. H. A combinatorial approach
for the design of complementarity-determining region-derived
peptidomimetics with in vitro anti-tumoral activity. J. Biol. Chem.
2009, 284, 34126−34134.
(11) (a) Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell
Tissue Res. 2010, 339, 269−280. (b) Takada, Y.; Ye, X.; Simon, S. The
Integrins. Genome Biol. 2007, 8, 215.
(12) Dechantsreiter, M. A.; Planker, E.; Matha, B.; Lohof, E.;
Jonczyk, A.; Goodman, S. L.; Kessler, H. N-Methylated Cyclic RGD
Peptides as Highly Active and selective αVβ3 integrin antagonists. J.
Med. Chem. 1999, 42, 3033−3040.
(13) (a) Marinelli, L.; Lavecchia, A.; Gottschalk, K.-E.; Novellino,
E.; Kessler, H. for example, see:_Docking studies on alphavbeta3
integrin ligands: pharmacophore refinement and implications for drug
design. J. Med. Chem. 2003, 46, 4393−4404. (b) Heckmann, D.;
Meyer, A.; Marinelli, L.; Zahn, G.; Stragies, R.; Kessler, H. Probing
integrin selectivity: rational design of highly active and selective
ligands for the α5β1 and αvβ3 integrin receptor. Angew. Chem., Int. Ed.
2007, 46, 3571−3574. (c) Bochen, A.; Marelli, U. K.; Otto, E.;
Pallarola, D.; Mas-Moruno, C.; Saverio, F.; Leva, D.; Boehm, H.;

ACS Combinatorial Science Research Article

DOI: 10.1021/acscombsci.8b00144
ACS Comb. Sci. 2019, 21, 198−206

205

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscombsci.8b00144
http://pubs.acs.org/doi/abs/10.1021/acscombsci.8b00144
http://pubs.acs.org/doi/suppl/10.1021/acscombsci.8b00144/suppl_file/co8b00144_si_001.pdf
mailto:p.timmerman@pepscan.com
mailto:p.timmerman@pepscan.com
http://orcid.org/0000-0002-0431-2170
http://orcid.org/0000-0001-6687-5297
http://dx.doi.org/10.1021/acscombsci.8b00144


Spatz, J. P.; Novellino, E.; Kessler, H.; Marinelli, L. Biselectivity of iso
DGR Peptides for Fibronectin Binding Integrin Subtypes α5β1 and
αvβ6: Conformational Control through Flanking Amino Acids. J. Med.
Chem. 2013, 56, 1509−1519. (d) Rechenmacher, F.; Neubauer, S.;
Polleux, J.; Mas-Moruno, C.; De Simone, M.; Cavalcanti-Adam, E. A.;
Spatz, J. P.; Fas̈sler, R.; Kessler, H. Functionalizing αvβ3- or α5β1-
selective integrin antagonists for surface coating: A method to
discriminate integrin subtypes in vitro. Angew. Chem., Int. Ed. 2013,
52, 1572−1575. (e) Hegemann, J. D.; De Simone, M.; Zimmermann,
M.; Knappe, T. A.; Xie, X.; Di Leva, F. S.; Marinelli, L.; Novellino, E.;
Zahler, S.; Kessler, H.; Marahiel, M. A. Rational improvement of the
affinity and selectivity of integrin binding of grafted lasso peptides. J.
Med. Chem. 2014, 57, 5829−5834. (f) Neubauer, S.; Rechenmacher,
F.; Brimioulle, R.; Saverio, F.; Leva, D.; Bochen, A.; Sobahi, T. R.;
Schottelius, M.; Novellino, E.; Mas-Moruno, C.; Marinelli, L.; Kessler,
H. Pharmacophoric Modifications Lead to Superpotent αvβ3 Integrin
Ligands with Suppressed α5β1 Activity. J. Med. Chem. 2014, 57,
3410−3417. (g) Maltsev, O. V.; Marelli, U. K.; Kapp, T. G.; Di Leva,
F. S.; Di Maro, S.; Nieberler, M.; Reuning, U.; Schwaiger, M.;
Novellino, E.; Marinelli, L.; Kessler, H. Stable Peptides Instead of
Stapled Peptides: Highly Potent αvβ6-Selective Integrin Ligands.
Angew. Chem., Int. Ed. 2016, 55, 1535−1539. (h) Kruss, S.; Wolfram,
T.; Martin, R.; Neubauer, S.; Kessler, H.; Spatz, J. P. Stimulation of
Cell Adhesion at Nanostructured Teflon Interfaces. Adv. Mater. 2010,
22, 5499−5506. (i) Kruss, S.; Erpenbeck, L.; Amschler, K.;
Mundinger, T. A.; Boehm, H.; Helms, H.-J.; Friede, T.; Andrews,
R. K.; Schön, M. P.; Spatz, J. P. Adhesion Maturation of Neutrophils
on Nanoscopically Presented Platelet Glycoprotein Ibα. ACS Nano
2013, 7, 9984−9996. (j) Polo, E.; Nitka, T. T.; Neubert, E.;
Erpenbeck, L.; Vukovic, L.; Kruss, S. Control of integrin affinity by
confining peptides on fluorescent carbon nanotubes. ACS Appl. Mater.
Interfaces 2018, 10, 17693−17703.
(14) (a) Kimura, R. H.; Levin, A. M.; Cochran, F. V.; Cochran, J. R.
Engineered cystine knot peptides that bind αvβ3, αvβ5, and α5β1
integrins with low-nanomolar affinity. Proteins: Struct., Funct., Genet.
2009, 77, 359−369. (b) Kimura, R. H.; Teed, R.; Hackel, B. J.; Pysz,
M. A.; Chuang, C. Z.; Sathirachinda, A.; Willmann, J. K.; Gambhir, S.
S. Pharmacokinetically Stabilized Cystine Knot Peptides that bind
Alpha-v-Beta-6 Integrin with Single-Digit Nanomolar Affinities for
Detection of Pancreatic Cancer. Clin. Cancer Res. 2012, 18, 839−849.
(c) Kim, J. W.; Cochran, F. V.; Cochran, J. R. A Chemically Cross-
Linked Knottin Dimer Binds Integrins with Picomolar Affinity and
Inhibits Tumor Cell Migration and Proliferation. J. Am. Chem. Soc.
2015, 137, 6−9.
(15) Timmerman, P.; Beld, J.; Meloen, R. H.; Puijk, W. C. Method
for Selecting a Candidate Drug Compound. WO/2004/077062, 2004.
(16) Bernhagen, D.; De Laporte, L.; Timmerman, P. High-Affinity
RGD-Knottin Peptide as a New Tool for Rapid Evaluation of the
Binding Strength of Unlabeled RGD-Peptides to αvβ3, αvβ5, and α5β1
Integrin Receptors. Anal. Chem. 2017, 89, 5991−5997.
(17) Aumailley, M.; Gurrath, M.; Calvete, J.; Timpl, R.; Kessler, H.
Arg-Gly-Asp constrained within cyclic pentapeptides - Strong and
selective inhibitors of cell adhesion to vitronectin and laminin
fragment P1. FEBS Lett. 1991, 291, 50−54.
(18) Giebel, L. B.; Cass, R. T.; Milligan, D. L.; Young, D. C.; Arze,
R.; Johnson, C. R. Screening of cyclic peptide phage libraries identifies
ligands that bind streptavidin with high affinities. Biochemistry 1995,
34, 15430−15435.
(19) Bauch, M.; Toma, K.; Toma, M.; Zhang, Q.; Dostalek, J.
Surface plasmon-enhanced fluorescence biosensors: a review.
Plasmonics 2014, 9, 781−799.
(20) Pallarola, D.; Bochen, A.; Boehm, H.; Rechenmacher, F.;
Sobahi, T. R.; Spatz, J. P.; Kessler, H. Interface immobilization
chemistry of cRGD-based peptides regulates integrin mediated cell
adhesion. Adv. Funct. Mater. 2014, 24, 943−956.
(21) Beines, P. W.; Klosterkamp, I.; Menges, B.; Jonas, U.; Knoll, W.
Responsive Thin Hydrogel Layers from Photo-Cross-Linkable
Poly(N-isopropylacrylamide) Terpolymers. Langmuir 2007, 23,
2231−2238.

(22) Gee, K. R.; Archer, E. A.; Kang, H. C. 4-Sulfotetrafluorophenyl
(STP) esters: New water-soluble amine-reactive reagents for labeling
biomolecules. Tetrahedron Lett. 1999, 40, 1471−1474.
(23) Junk, M. J. N.; Jonas, U.; Hinderberger, D. EPR spectroscopy
reveals nanoinhomogeneities in the structure and reactivity of
thermoresponsive hydrogels. Small 2008, 4, 1485−1493.
(24) Anac, I.; Aulasevich, A.; Junk, M. J. N.; Jakubowicz, P.;
Roskamp, R. F.; Menges, B.; Jonas, U.; Knoll, W. Optical
Characterization of Co-Nonsolvency Effects in Thin Responsive
PNIPAAm-Based Gel Layers Exposed to Ethanol/Water Mixtures.
Macromol. Chem. Phys. 2010, 211, 1018−1025.
(25) Aguilar, J. A.; Nilsson, M.; Bodenhausen, G.; Morris, G. A. Spin
echo NMR spectra without J modulation. Chem. Commun. 2012, 48,
811−813.

ACS Combinatorial Science Research Article

DOI: 10.1021/acscombsci.8b00144
ACS Comb. Sci. 2019, 21, 198−206

206

http://dx.doi.org/10.1021/acscombsci.8b00144

